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An assumption commonly used in cable theory is revised by taking into account electrical amplification due
to intracellular capacitive effects in passive dendritic cables. A generalized cable equation for a cylindrical
volume representation of a dendritic segment is derived from Maxwell’s equations under assumptions: �i� the
electric-field polarization is restricted longitudinally along the cable length; �ii� extracellular isopotentiality;
�iii� quasielectrostatic conditions; and �iv� homogeneous medium with constant conductivity and permittivity.
The generalized cable equation is identical to Barenblatt’s equation arising in the theory of infiltration in
fissured strata with a known analytical solution expressed in terms of a definite integral involving a modified
Bessel function and the solution to a linear one-dimensional classical cable equation. Its solution is used to
determine the impact of thermal noise on voltage attenuation with distance at any particular time. A regular
perturbation expansion for the membrane potential about the linear one-dimensional classical cable equation
solution is derived in terms of a Green’s function in order to describe the dynamics of free charge within the
Debye layer of endogenous structures in passive dendritic cables. The asymptotic value of the first perturbative
term is explicitly evaluated for small values of time to predict how the slowly fluctuating �in submillisecond
range� electric field attributed to intracellular capacitive effects alters the amplitude of the membrane potential.
It was found that capacitive effects are almost negligible for cables with electrotonic lengths L�0.5, contrib-
utes up to 10% of the signal for cables with electrotonic lengths in the range between 0.25�L�0.5, and
dominates the membrane potential for electrotonically short cables �L�0.2�. These results show that electro-
tonically short dendritic cables with both ends sealed are prone to significant neurobiological thermal noise due
to intracellular capacitive effects. The presence of significant thermal noise weakens the assumption of intra-
cellular isopotentiality when approximating dendrites with compartments.
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I. INTRODUCTION

Endogenous structures in dendrites are constituents of the
cytosol �semifluid portion of cytoplasm� that include cytosk-
eletal structures �e.g., tubulin-based microtubules �25 nm
and actin-based neurofilaments �10 nm� and the endoplas-
mic reticulum �ER� �100–200 nm. The cytoskeletal struc-
tures are highly charged one-dimensional polymers that dis-
play a high-charge density and which contain “counterions”
in the form of a condensation cloud on surfaces forming a
conductive medium for condensed ions to move in accor-
dance with Manning’s condensation theory �1�. Cytoskeletal
structures play a heretofore unknown role in the processing
of electrical signals within the dendritic trees of cortical neu-
rons, especially in the most distal dendrites where surface
charge effects may arise that can polarize the neuron by an
alteration in the charge that is borne from permittivity of free
charge not only on the surface of the plasma membrane, but
also on the surface of endoplasmic membranes.

Axons have no ability to synthesize proteins because they
do not contain ribosomes throughout their entire length �2�.
Thus, axons depend entirely on proteins produced in the
soma, which are transported by microtubules. On the other
hand, dendrites contain ribosomes and this protein synthetic
machinery plays an important role in dendritic function. The
presence of �poly�ribosomes in dendrites is an indicator that

local protein synthesis plays an important role in dendritic
function. Dendritic �poly�ribosomes are localized beneath
synaptic sites. Other endogenous structures are Nissl sub-
stances �in cell bodies� that represent the stacks of rough ER
where proteins are synthesized. Its distribution into proximal
dendrites is an indication of the protein synthesis activity of
the dendrites, while smooth ER can be found in more distal
dendrites. Indeed localized ER export sites exist throughout
the entire dendritic tree: from the soma to the most distal
dendritic branches �3�. The smooth ER is a continuous mem-
brane with integrative and regenerative properties analogous
to those of the plasma membrane �4�.

Earlier modeling efforts treat the intracellular medium of
dendrites to be a homogeneous resistive fluid of 70 � cm as
measured for electrolyte solution only �5�. In particular, the
early modeling efforts on cable properties of dendrites were
limited to the proximal dendrites showing that constant �DC�
inputs attenuate exponentially with distance when recorded
from the soma �5�. Given that the intracellular medium in
fine distal dendrites is packed with polyelectrolytes �i.e.,
polymers in an aqueous electrolyte solution� and endoplas-
mic membranes, which can result in limited intracellular
space, a distal synaptic input will be augmented and the sig-
nals will not attenuate along the cable. This has important
ramifications on how distally located synaptic inputs can in-
fluence the somatic membrane potential and therefore play a
significant role in synaptic integration referred to recently as
“dendritic democracy” �6�.

The modeling efforts by Shemer et al. �7� have explicitly
considered endoplasmic membranes in the cytoplasm as an*roman.poznanski@um.edu.my
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ER cable encased within a core conductor. However, such
cytoplasmic inhomogeneity while treating the ER membrane
core as part of an endogenous structure of the core conductor
does not explicitly take into consideration thermal noise as-
sociated with intracellular capacitive effects due to intraden-
dritic excitability. These effects are attributed to the resis-
tance or the capacitance from random movement of charges
caused by the thermodynamic equilibrium of the amount of
charge on the capacitor with the axial resistance representing
calorific �generating heat� dissipation due to charge displace-
ment and the consequent finite velocity of charge rearrange-
ment. The analysis of deciphering such effects can be shown
with the use of Maxwell’s equations.

Lindsay et al. �8� derived from Maxwell’s equations a
three-dimensional model for the dendritic membrane poten-
tial, under sufficiently strong assumptions, which in the lim-
iting case of a cylindrical volume �i.e., surface of revolution
which exhibits cylindrical symmetry� was shown to reduce
to a one-dimensional cable. Such three-dimensional models
of the dendritic structure were shown to produce a significant
impact on signal propagation in passive dendrites with a
single branch point �9� �see also Ref. �10��. However, neither
study considered solutions close to charged membrane sur-
faces near the Debye layer �11�. The Debye layer is closely
involved with the dynamic functional activity of cytoskeletal
structures and the endoplasmic membranes which they sur-
round. The Debye layer is separated from the rest of the ions
in the cytoplasm by the counterion condensation cloud which
acts as a dielectric medium between the endogenous core and
the cellular membrane. This cloud provides both resistive
and capacitive components. The inductive component is ne-
glected because the constituent ER membrane as part of the
endogenous structural core has no inductive properties, as it
mainly applies to actin’s double-stranded helical structure
that induces ionic flow in a solenoidal manner �12�.

Ions �or other similar charge carriers� migrate in the pres-
ence of an electric field and diffuse as a result of random
thermal excitations. Further, the coupling between the mo-
tion of ions �or flux� due to the electric field and changes in
the electric field experienced as a result of flow in charge
density caused by this motion are typically modeled by the
Nernst-Planck equations �13–15�. The effect of changes in
ionic concentration where ions diffuse and are acted upon by
electrochemical gradients is ignored within the framework of
cable theory. It has not yet been feasible to include the dy-
namics in which flux generated by moving free charge due to
concentration gradients arises from the Nernst-Planck equa-
tions as well as those described by cable theory in a single
unified theory. Electrodiffusion models based on the Nernst-
Planck equations reduce to expressions similar to the cable
equation under limited conditions, when the spatial variation
of ionic concentration changes are small, and by neglecting
variations in concentration around the circumference of the
cable relative to those along the cable, so that radial variation
of concentrations of each ionic species is small and can be
neglected �16�.

In addition to the flux, ions can be trapped, buffered, or
crowded when diffusing in the cytoplasm These obstacles
provide anomalously slow electrodiffusion of ions relative to
free diffusion in the cytosol referred to as anomalous subdif-

fusion under the following limiting conditions: �i� that the
membrane Nernst potentials are constant; �ii� that the longi-
tudinal resistivity for all ions are constant and can be lumped
into a single parameter; �iii� that the longitudinal diffusion of
ions can be neglected when there is small or negligible spa-
tial variation of ionic concentration gradients �17–20�. More-
over, the constant-field assumption or the electroneutrality
condition used in almost all applications of Nernst-Planck
equations, with some rare exceptions �see, e.g., Ref. �21��,
does not provide a theoretical groundwork for electric-field
potentials within the Debye layer where charge density is
neither zero nor constant. For this reason, an alternative route
in studying the Debye layer through a Maxwellian approach
is considered by lumping all cations �positively charged ions�
and anions �negatively charged ions� and ignoring concentra-
tion gradients of specific ions.

Priel et al. �22� proposed a new model for information
processing in dendrites based on electrical signaling involv-
ing the cytoskeleton. Green and Triffet �23–25� modeled
propagation of waves and information transfer dynamics
within the Debye layer. Other studies treat individual micro-
tubules in dendrites as electrical transmission lines to inves-
tigate wave propagation �26�. In this paper, Maxwell’s equa-
tions are applied to better understand the dynamical
properties of the Debye layer on surfaces of cytoskeletal
structures and the endoplasmic membranes which they sur-
round and together are treated by way of a continuous en-
dogenous structural core encased in a core-conductor-like
cable. A mathematical derivation of the solution governing
voltage in a one-dimensional finite linear core-conductor-like
cable with sealed ends is presented. The solution is applied
to investigate how the membrane potential is altered by
surface-charge effects �or intracellular capacitive effects�
arising in the vicinity of the Debye layer, which is a layer of
ions subjacent to endoplasmic membranes and cytoskeletal
structures.

II. CHARGE DENSITY DUE TO ELECTRIC FIELD
POLARIZED IN THE LONGITUDINAL DIRECTION

Extrinsically applied electric fields that arise from electri-
cal stimulation of a dendritic tree �see, e.g., Ref. �27�� do not
explicitly elucidate the fundamental physical bases of den-
dritic excitability inherent though Maxwell’s equations �28�:

� · D = � , �1�

�XE = − �B/�t , �2�

� · B = 0, �3�

�XH = J + �D/�t , �4�

where E is the electric field �V/m�, D is the electric displace-
ment field �C /m2�, B is the magnetic induction �T�, H is the
magnetic field �A/m�, � is the free charge density in the
intracellular fluid �C /m3�, J is the current density �A /m2�,
and t is time in seconds.

In this paper, the electric field is assumed to be polarized
in the longitudinal direction �along the cable length�. There-
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fore, the electric field becomes E=E�x , t�x+E�y , t�y
+E�z , t�z�E�x , t�x where x, y, and z denote unit base vec-
tors and J�x , t� is the current density flowing along the cable
in the x direction. It has been shown by Rosenfalk �29� and
Pickard �30,31� that the magnetic field is negligible com-
pared to that of the electric field in neurons due to the fact
that charges move slowly in intracellular media. Hence, from
Eq. �2� it becomes clear that �XE=0 so that the quasielec-
trostatic field E derives from an electric potential in the in-
tracellular medium Vi�x , t�:

E�x,t� = − �Vi/�x . �5�

In order to obtain E, the well known continuity equation for
the current density is found by taking the divergence of Eq.
�4� and substituting Eq. �1� yields

�J�x,t�/�x + ��/�t = 0, �6�

which is the equation of continuity of charge ��� and current
density �J�. Furthermore, since capacitive effects are in-
cluded, the current density is J=JC+JD where JC=�E
�Ohm’s law� and JD=�r�o�E /�t are densities of the conduc-
tivity and displacement currents, respectively. The term �r�o
denotes the permittivity that characterizes the response of the
system in terms of separation of opposite charges in the pres-
ence of an electric field �E� measured as a capacitance
=�r�oSA /d=�r�o2�r 	x /2r=�r�o�	x �
F� �32�. The per-
mittivity of vacuum �o=8.85�10−14 F /cm and the relative
permittivity is unity, however, in the case of sea water �r
=81 �dimensionless�. The electrical conductivity ��S /cm�
varies �9 orders of magnitude between the conductivity of
cerebro-spinal fluid and the conductivity of plasma mem-
brane which is 1.56 S/m and 3.5�10−9 S /m, respectively
�33�. The cytoplasm of dendrites consists of fluid �e.g., water,
electrolytes, and charged proteins�, cytoskeletal proteins, and
endoplasmic membranes, so the average is a reasonable
choice governing the tortuosity of the intracellular medium.
Therefore, the electrical conductivity of intracellular fluid
containing endoplasmic membranes has a value that is �
=3.5�10−7 S /cm or thereabouts.

Using Eq. �5� the current density becomes

J�x,t� = − � � Vi/�x − �r�o�
2Vi/�t � x . �7�

Substituting Eq. �7� into Eq. �6� yields the following expres-
sion:

− ��2Vi/�x2 − �r�o�
3Vi/�t � x2 + ��/�t = 0. �8�

It also holds from the constituent relationships that

D = �r�oE , �9�

where �r is the relative permittivity �or dielectric constant� of
water �dimensionless�; �o �F/cm� is the permittivity of
vacuum. Substitution of Eq. �9� into Eq. �1� yields Gauss’
law

�r�o � E�x,t�/�x = � �10�

and substitution of Eq. �5� into Eq. �10� yields

− �r�o�
2Vi�x,t�/�x2 = � . �11�

Now substituting Eq. �11� into Eq. �8� yields an equation for
the density of free charge:

��/�r�o�� + 2 � �/�t = 0. �12�

The general solution of Eq. �12� is given by

��x,t� = ��x,0�exp�− t��/2�r�o�� , �13�

where ��x ,0� is the initial distribution of charge at spatial
location x along an infinite dendritic cable. Thus, Eq. �13�
portrays free charge decaying with the Maxwell time con-
stant:

�� = 2�r�o/� . �14�

This equation is similar to the Maxwell time constant derived
by Bédard et al. �34�. The Maxwell time constant is ��

�1 msec, therefore, free charge within a passive cable de-
cays with submillisecond precision, which is the fastest time
scale on which changes in transmembrane potential are be-
lieved to occur in dendrites of cortical neurons �35�. Conse-
quently, the contribution to current flow arising from capaci-
tive charge equalization or diffusion of free charge in a
passive cable will have an effect upon the voltage created by
charged surfaces in the intracellular fluid. This is an impor-
tant result because it means that the capacitive effects are not
negligible as previously assumed in cable theory �28,36–39�.

III. DERIVATION OF A GENERALIZED
CABLE EQUATION

Cable theory has a long history of modeling dendrites as
electrical cables �see Refs. �40–42��. In this paper, linear
cable theory is utilized to show that the equation describing
the evolution of the membrane potential V=Vi−Ve is con-
structed from conservation of electric charge ��� in a volume
element �� of cylindrical dendrite over a differential dis-
tance 	x as shown in Fig. 1. The dendrite has a radius �r�,
cross-sectional area ��r2�, and perimeter around the mem-
brane �2�r�.

Application of Kirchhoff’s current law to Eq. �10� in a
cylindrical volume �� with length L and radius �r� as given
in Ref. �43�:

�1/�r�o��


�d = �


� · Ed

= �r2�E�x + 	x� − E�x,t�	 . �15�

FIG. 1. A schematic cable of a dendritic segment as volume
element �� with length increment 	x and electrotonic length L. The
arrow indicates the convention that positive charge is in the direc-
tion of increasing x, which is the physical distance along the cable
�centimeters�.
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The equation of continuity for the charge density ��� and the
current density �J� as expressed through Eq. �6� but in a
volume element �� is given in Ref. �43�:

− �


��/�td = �


� · Jd

= �r2�J�x + 	x,t� − J�x,t�	

+ 2�r�
x

x+	x

Im�x,t�dx , �16�

where the last term is the transmembrane current density
�A /cm2� and will be specified later �positive outward�. Upon
differentiating Eq. �15� with respect to time and multiplying
by −��r�o� the following relation is obtained:

− �


��/�td = − �r�o � /�t�E�x + 	x,t� − E�x,t�	�r2.

�17�

Equating Eq. �17� to Eq. �16� and using mean-value theorem
for the integration in Eq. �16� yields

− �r�o�r2 � /�t�E�x + 	x,t� − E�x,t�	

= �r2�J�x + 	x,t� − J�x,t�	 + 2�rIm��,t�	x ,

x � � � x + 	x .

Dividing by 	x and letting 	x→0 yields

− �r�o�r2�2E�x,t�/�t � x = �r2 � J�x,t�/�x + 2�rIm�x,t� .

�18�

Since J=�E+�r�o�E /�t and E=−�Vi /�x it can be shown
that �r2�J /�x= �−1 /ri��2Vi /�x2− �ci /2��3Vi /�t�x2, where Vi
is the intracellular potential, ci is the axial capacitance across
unit length ci=2�r�o�r2 �Fcm�, and ri is the core resistance
�or intracellular resistance� per unit length ri=1 /�r2�
�� /cm�. The core resistance �or intracellular resistance� per
unit length differs slightly from the intracellular resistivity or
volume resistivity of the intracellular medium also referred
to as specific resistance, which is �1 /�� �� /cm�.

Since �2E�x , t� /�t�x=−�3Vi�x , t� /�t�x2 it follows from
Eq. �18� that

ci�
3Vi�x,t�/�t � x2 = �− 1/ri��2Vi/�x2 + 2�rIm�x,t� . �19�

If the axial capacitance is in parallel with the axial resistance
in a similar way shown by Scott �40� who considered axial
resistances in parallel with inductance then an alternative
method for obtaining Eq. �19� can be used for the circuit as
shown in Fig. 2. Furthermore, the cable is infinite and there-
fore the current density through the membrane located in the
center must be equal to the longitudinal current flowing in
each direction. Consequently, the current densities are mul-
tiplied by 2 and therefore, by conservation of current the
following relation is obtained:

2 � · �Jc + JD� = − Im/2�r ,

where JD=�r�o�E /�t=−�Ci /2��2Vi /�t�x and Jc=�E
=−�1 /2Ri��Vi /�x. Also note the transmembrane current den-

sity �A /cm2� is Im�x , t�=Vi /Rm+Cm�Vi /�t, where Rm
=rm2�r is the membrane resistivity or resistance across a
unit area of passive membrane �� cm2�; Cm=cm /2�r is the
membrane capacitance per unit area of membrane �F /cm2�.
Ci=ci /�r2 is the membrane capacity per unit length of cable
�F/cm� and Ri=1 /2� is the intracellular resistivity �� cm�.
The convention is that longitudinal currents are positive in
the direction of increasing x and that the transmembrane cur-
rents are positive in the inward direction.

This study assumes that the conductivity of the extracel-
lular fluid is high leaving the extracellular medium to be
isopotential �i.e., Ve=0�. Thus, the effect of the external po-
tential on transmembrane potential is negligible �44�. Hence
by letting V=Vi together with the standard passive mem-
brane current �RC circuit as shown in Fig. 2� it is obvious:

im = 2�rIm�x,t� = �mV + cm � V/�t ,

where im is the membrane current per unit length �A/cm�, cm
is the membrane capacity per unit length of cylinder �F/cm�,
and rm is the membrane resistance across a unit length of
passive membrane cylinder �� cm�.

Equation �19� becomes

�mV + cm � V/�t = �1/ri��2V/�x2 + ci�
3V�x,t�/�t � x2.

�20�

Note that if the circuit in Fig. 2 is used then the coeffici-
ents �1 /ri� and ci in Eq. �20� will need to be replaced with
�1 /Ri� and Ci, respectively. Let �m=1 /rm, �m=cmrm

�passive membrane time constant in msec�, �=
�rm /ri�
�electrotonic space constant in centimeters�, and 	=cirm.
Equation �20� becomes

V + �m � V/�t = �2�2V/�x2 + 	�3V�x,t�/�t � x2. �21�

Recasting in terms of dimensionless time T= t /�m and space
X=x /�, the dimensionless form of the generalized cable
equation is �43�

FIG. 2. A circuit representing a patch of passive membrane. The
intracellular medium containing the endogenous core is represented
by longitudinal capacitance �Ci� of the cable �F/cm� in parallel with
the intracellular resistivity �Ri� of the cable �� cm�.
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V + �V/�T = �2V/�X2 + ��3V�X,T�/�T � X2, �22�

where �=�� /�m�1. It should be noted that Eq. �22� is iden-
tical to Eq. �3� in Ref. �22� when L=b=0. In this model
inductive component �L� is neglected on physiological
grounds �5�, and b which is the mean distance between
charges ��2.5�10−10 m� is assumed to be zero, since the
Debye layer is continuous, no spacing between charges ex-
ists.

IV. SOLUTION OF THE GENERALIZED
CABLE EQUATION

The third-order partial differential equation defined by Eq.
�22� arises in the theory of seepage �infiltration� of liquids in
fissured strata and is known as Barenblatt’s equation �see
Ref. �45��. Its solution was given by Hill �46�:

V�X,T� = �1/��e−T/��
0

�

e−�/�V0�X,��I0�2�T��1/2/��d� ,

�23�

where I0 is the modified Bessel function of the first kind of
order zero, and V0�X ,T� is the solution of the one-
dimensional classical cable equation �5,40�:

V0 + �V0/�T = �2V0/�X2. �24�

Therefore, Eq. �22� is considered to be an augmented cable
equation of the classical cable equation �Eq. �24�� reduced
from Maxwell’s equations. Next a solution needs to be de-
rived in a perturbative way to see what the next term con-
tributes that is being thrown away when the one-dimensional
classical cable equation solution is reduced from the aug-
mented cable equation solution.

V. PERTURBATIVE EXPANSION TERMS DERIVED
FROM THE CLASSICAL CABLE EQUATION

The solution of the one-dimensional classical cable equa-
tion �Eq. �24�� for the voltage response at various locations
to an instantaneously delivered current pulse I�T�= Io��T�
�amperes� injected at a terminal at X=0 so that
�Vo�0,T� /�X=−ri�Io��T� in the case of a nerve cylinder
with sealed end at X=L �i.e., �Vo�L ,T� /�X=0� is �15�:

V0�X,T� = ri�Ioe−T/ 
 ��T� �
n=−�

�

exp�− �2nL − X�2/4T� ,

where L is the electrotonic length of the cable. The use of
Poisson’s transformation formula �see, e.g., Ref. �47�� trans-
forms the V0 function into the following expression:

V0�X,T� = ri�Io�e−T/L� �
n=−�

�

exp�− 4�2T��X − 2nL�/L2�2	 .

In seeking the solution to the generalized cable equation
one requires to modify the solution to the one-dimensional
classical cable equation by adding on small perturbations:

V�X,T� = Vo�X,T� + �V1�X,T� + �2V2�X,T� + ¯ , T � 0.

�25�

Substituting into Eq. �22�, V�X ,T� with its expansion V=V0
+�V1+�2V2+¯ as a power series in �, one can arrive at the
following systems of equations:

�Vo�X,T� + �V1�X,T� + �2V2�X,T� + ¯� + �VTo�X,T�

+ �VT1�X,T� + �2VT2�X,T� + ¯� − �VXXo�X,T�

+ �VXX1�X,T� + �2VXX2�X,T� + ¯� − �VTXXo�X,T�

+ �VTXX1�X,T� + �2VTXX2�X,T� + ¯�� = 0.

Together with initial condition:

Vo�X,0� + �V1�X,0� + �2V2�X,0� + ¯ = 0

and boundary conditions:

�/�X�Vo�0,T� + �V1�0,T� + �2V2�0,T� + ¯� = − ri�Io��T�

and � /�X�Vo�L,T� + �V1�L,T� + �2V2�L,T� + ¯� = 0.

Performing a little algebra and setting the coefficients of the
powers of � equal to each other, one can arrive at the fol-
lowing sequence of equations corresponding to the succes-
sive powers of �. At orders �, �2, and �3, we have

O���:V1�X,T� + VT1�X,T� − VXX1�X,T� − VTXX0�X,T� = 0,

O��2�:V2�X,T� + VT2�X,T� − VXX2�X,T� − VTXX1�X,T� = 0,

O��3�:V3�X,T� + VT3�X,T� − VXX3�X,T� − VTXX2�X,T� = 0.

In the above set of equations, the source terms are either
given or are known solutions of proceeding equations, and so
Green’s function methods can be applied iteratively to find
the voltage correction terms in explicit form in the same
manner as if a driving function is applied to the cable. There-
fore, by assuming the time-dependent longitudinal current Io
injected at X=0 is absorbed in the zeroth perturbation, the
voltage response for the first, second, and third perturbations
is

V1�X,T� = �
0

L �
0

T

G�X,�;T − ��V���0��,��d�d� ,

V2�X,T� = �
0

L �
0

T

G�X,�;T − ��V���1��,��d�d� ,

V3�X,T� = �
0

L �
0

T

G�X,�;T − ��V���2��,��d�d� ,

where the Green’s function is �15�

G�X,�;T� = e−T/ 
 �4�T� �
n=−�

�

�exp�− �X − 2nL − ��2/4T�

+ exp�− �X − 2nL + ��2/4T�	 .

Upon the use of Poisson’s transformation formula �see, e.g.,
Ref. �47��, an alternative Green’s function representation can
be found:
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G�X,�;T� = �e−T/2L� �
n=−�

�

�exp�− 4�2T��X − 2nL − ��/L2�2�

+ exp�− 4�2T��X − 2nL + ��/L2�2�	 .

The expansion of the terms and substitution of above terms
into Eq. �25� give the solution to the generalized cable equa-
tion, viz.,

V�X,T� = Vo�X,T� + ���
0

L �
0

T

G�X,�;T

− ��V���0��,��d�d� + �2��
0

L �
0

T

G�X,�;T

− ���3/�� � �2��
0

L �
0

T

G��,�;�

− s�Vs��0��,s�dsd��d�d� + ���3� . �26�

It is left to the reader to show that the O��2� term is quite
small relative to the O��� term. Based on this, it will be
sufficient to explain the intracellular capacitive effects �or
surface-charge effects� on voltage.

VI. ASYMPTOTIC ANALYSIS OF THE VOLTAGE
AT SMALL VALUES OF TIME

V�X ,T� is needed to be found at small values of time �i.e.,
T�1�. Differentiating the Green’s function once with respect
to T, and twice with respect to X, and noting that V0�X ,T�
=ri�IoG�X ,0 ;T�, yields

VXXT0�X,T� �
T→0

− 8ri�Io��/L2�2G�X,0;T� . �27�

The asymptotic behavior of Eq. �27� at very early times was
found by noting that Vo�X ,T� spreads out with time into an
ever-wider bell-shaped curve of exponentially decreasing
area with most of the area under the curve concentrated at
small values of time.

The first perturbative term V1�X ,T� is found by substitut-
ing Eq. �27� to yield

V1�X,T� = �
0

L �
0

T

G�X,�;T − ��V���0��,��d�d�

�
T→0

− 8ri�Io��/L2�2

��
0

L �
0

T

G�X,�;T − ��G��,0;��d�d�

= − 8ri�Io��/L2�2�
0

T

G�X,0;T�d�

= − 8ri�Io��/L2�2TG�X,0;T� ,

where use has been made of the semigroup property of the
Green’s function �15�. Substituting the above into the expan-
sion �Eq. �26�� becomes

V�X,T� �
T→0

V0�X,T��1 − 8���/L2�2T� + ���2� . �28�

VII. RESULTS AND DISCUSSION

The approximation expressed by Eq. �28� gives the intra-
cellular capacitive effects on voltage in a passive dendritic
cable. For values of T�0.001 which corresponds to the sub-
millisecond range �i.e., t�0.02 msec for �m=20 msec�, the
thermal noise corresponding to the term multiplied by �
=0.001 in Eq. �28� represents less than 2% of the signal for
cables with compact electrotonic lengths �0.25�L�1�.
However, for cables considered to be compartments �L
�0.2�, the thermal noise contaminates the signal by up to
25% �see Fig. 3, �v�–�vi��. This suggests that the membrane
potential in compartment models where each compartment
size is under 0.2 electrotonic units �48� will be contaminated
by thermal noise. Yet when L is large the thermal noise is
negligible in accordance with the expected contribution of
thermal noise of less than 5 
V. Studies done by Softky
�35� and Manwani and Koch �38,39� who used an infinite
cable L=� showed that thermal noise was almost negligible
in agreement with our conclusions, although not for cables
with short electrotonic lengths.

The results presented in Fig. 3 do not indicate the great-
est discrepancy between the generalized cable equation re-
sponse and the classical cable equation response, which is
more precisely established in Fig. 4. As an example, if ��

=0.02 msec and �m=20 msec as representative values of
neocortical pyramidal cells �49� then �=0.001. The results
presented in Fig. 4 illustrate the impact of thermal noise on
the transient attenuation of voltage at a point measured close
to the origin in a passive cable of electrotonic length L and
for �=0.001 and ri�Io=1 mV. In Fig. 4 a qualitative com-
parison is made with the solution of the classical cable equa-
tion �Vo� illustrated for sealed ends at X=0 and at X=L. It is
obvious from Fig. 4 that thermal noise contributes to the
signal only at very small values of T. This is because the
exponential terms all decay to zero while the modified Bessel
function term remains large, but not large enough to augment
the exponential terms in Eq. �23�. The steady-state or plateau
potential is lower for larger L values due to greater current
spread and hence voltage decay. The greatest discrepancy
between the generalized and classical cable equation re-
sponses occurs at the cessation of the voltage found approxi-
mately to be 1.2 mV, 1.0 mV, 0.5 mV, and 0.4 mV for L
=0.2, 0.25, 0.5, and 1.0, respectively. The responses mea-
sured at smaller values of T in the vicinity of the origin
crisscrossed due to the infinite response at T=0 for the case
when �=0. Therefore, satisfying the criteria that for T
�0.001, the response with �=0.001 is smaller than the re-
sponse without thermal noise, i.e., when �=0.

In Fig. 5 the impact of thermal noise on voltage attenua-
tion with distance is presented for several different L values.
The almost steady rate of attenuation along the cable is in-
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dicative of the responses generated from the classical cable
equation �Vo� measured at T=0.001. Given that particular
response for each electrotonic length of cable, the greatest
impact of thermal noise is as expected for cables with short-
est electrotonic lengths. For example, the discrepancy be-
tween the response affected by thermal noise ��=0.001� and
the response not affected by thermal noise ��=0� is found to

be 1.2 mV, 1.0 mV, 0.4 mV, and 0.1 mV for L=0.2, 0.25, 0.5,
and 1.0, respectively.

This work shows that cables with electrotonically short
lengths exhibit significantly greater thermal noise from intra-
cellular capacitive effects than in infinite cables. Manwani
and Koch �38,39� found thermal noise due to thermal agita-
tion of the electrical charges to be almost negligible in infi-
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FIG. 3. Intrinsic electrical noise �measured as a percentage of the subthreshold response� that is thermally generated and which produces
a 0.8 
V transmembrane voltage shift at physiological temperatures for a 10 mV subthreshold response in passive cables with electrotonic
length of L=1 �i�. The thermal noise is considered negligible and at the lower limit of noise. For L=0.5 �ii� there is a 14 
V transmembrane
voltage shift which is still considered negligible and within the expected values of a signal-to-noise ratio. When L=0.25 �iii� there is a 0.2
mV transmembrane voltage shift which will distort the signal by 2%. This contributes to the signal-to-noise ratio. When L=0.2 �iv� there is
a 0.5 mV transmembrane voltage shift which will distort the signal by up to 5%. When L=0.15 �v� there is a 1.6 mV transmembrane voltage
shift which will distort the signal by up to 16%. When L=0.135 �vi� there is a 2.5 mV transmembrane voltage shift which will distort the
signal by up to 25%.
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nite cables by treating the cytoplasm with a longitudinal ca-
pacitance in parallel with axial resistance. However, they
considered thermal noise due to the passive membrane resis-
tance, but neglected the aspects of thermal noise due to cy-
toplasmic capacitance, which in this model was the source of
the intradendritic thermal noise.

Intracellular capacitive effects play a significant role in
neurons without impulses in the suprathreshold range of
membrane potential. In such neurons, mostly from animals
in the lower phyla, the distinction between signal and noise
becomes obscured. However, in the subthreshold range of
membrane potential, noise is usually well controlled and it
would therefore suggest that functions of these neurons are
mostly accredited with graded potentials. The question of
whether dendritic spikes function in such a way as not to be
distorted by intradendritic thermal noise needs further ex-
plorative research to see whether active dendritic cables can
overcome the intrinsic degradation caused by intracellular
capacitive effects. The new cable modeling done by Poznan-
ski �50,51� and Bressloff �18� will need to be further ex-
tended in order to answer this question. Given that in the
high-frequency regime, the capacitive �diffusive� term domi-
nates the conductive �dissipative� membrane leaks, high-

frequency information would not be “filtered out” or
“smoothed out” by dendritic membrane capacitance due to
the effects of intracellular capacitance boosting the transmis-
sion of such fast signals at fast time scales. It would seem
that dendritic filtering would not affect the submillisecond
precision of temporal coding as observed for cortical neurons
in vitro �52�, and distally located dendritic spikes may
sharpen the rise time of somatic responses and contribute to
output precision.

The computer-based compartmental model is a popular
method for simulating the morphological and electrical prop-
erties of neurons �see, e.g., Ref. �48��. Software packages
based on compartmental models have been developed to
simulate complex neurons with thousands of compartments,
which are used frequently in computational neuroscience
�53�. However, despite the flexibility of compartmental mod-
els a problem that remains is the assumption used in the
discretization of the continuous cable of a dendritic segment.
Segev et al. �48� suggested that the segmentation of den-
drites should be made with electrotonic lengths less than 0.2.
As shown in this paper, cables with electrotonic lengths less
than 0.2 result in significant thermal noise contaminating the
membrane potential response. In particular, short compart-
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FIG. 4. The influence of thermal noise on the transient voltage decay. The voltage response is compared to the response in a passive cable
V0 for several values of electrotonic length �i� L=0.2, �ii� L=0.25, �iii� L=0.5, and �iv� L=1.0. The solution with thermal noise ��
=0.001� has effect on the voltage response for several values of times �T= t /�m� in the submillisecond range. The solution with no thermal
noise ��=0� was calculated with the Poisson transformed Green’s function expression with ten terms in the series. The responses were
measured near the origin in the submillisecond interval 0�T�0.01 for �=0.001 and ri�Io=1 mV.
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ments are prone to significant thermal noise rendering the
isopotentiality criteria for such compartments to become in-
valid. One can argue that this is not conclusive due to the
inclusion of a sealed-end boundary condition for the nonter-
minal end of the dendrite. In reality, the compartment is
linked to the next compartment via a resistance and so more
appropriate boundary conditions should have been a leaky or
Robin-type boundary condition. This would allow for current
exchange with neighboring compartments, just as a concep-
tualized region of a real dendrite is open to longitudinal dif-
fusional exchanges with proximal and distal contiguous re-
gions of the dendrite. However, due to the spontaneity of the
thermal noise, its effect would not be influenced by the
boundary during submillisecond time range.

The results show that the dominant effect of the intracel-
lular capacitive current occurs with submillisecond precision
rather than at the much slower time scale of �m. This notion
supports the hypothesis put forward by Softky �38� that sub-
millisecond synaptic currents exist inside dendrites where
fast excitatory postsynaptic potentials result from the capaci-
tive charge equalization inside the dendritic membrane rather
than resistive decay through it. Experimental findings from a
sensory synapse confirm submillisecond precision �54�.
However, in this model, the net flow of synaptic charge

within the passive membrane of dendrites and its role in
dendritic democracy �55� was not further investigated. Given
that Timofeeva et al. �55� were unable to achieve democracy
for distal synaptic inputs by simply increasing synaptic con-
ductance strength they proposed that other mechanisms have
to be invoked for dendritic democracy in purely passive
models of branched dendrites which would allow the somatic
response to distal synaptic inputs to be amplified. Therefore,
an alternative mechanism to dendritic democracy caused by
endogenous structures, which are charged surfaces, and thus
would have a profound effect upon the concentration of ions
to be found in their vicinity in so far as limiting the attenu-
ation of synaptic current. Furthermore, voltages created by
net flow of synaptic charge toward such charged surfaces
will have a very large effect upon the electric-field currents.
It would be interesting to extend the model to see whether at
high frequencies of synaptic bombardment, the diffusion or
equalization of synaptic charge within a passive membrane
by ions will be affected in the presence of an electric field.
Priel et al. �22� postulated a direct connection between cy-
toskeletal structures and ionic channels to effectively control
synaptic connections.

Intracellular signaling in dendrites and the effects intra-
cellular capacitive current play in distorting the calcium-
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FIG. 5. The influence of thermal noise on voltage attenuation with distance along a cable of electrotonic length �L�. The voltage response
is compared to the response in a passive cable V0 for several values of electrotonic length �i� L=0.2, �ii� L=0.25, �iii� L=0.5, and �iv� L
=1.0. The solution with no thermal noise ��=0� was calculated with the Poisson transformed Green’s function expression with ten terms in
the series. The responses were measured at T=0.001 being in the submillisecond interval 0�T�0.01 for �=0.001 and ri�Io=1 mV.
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voltage signal requires systems of reaction-diffusion equa-
tions to be solved. The recent work done by Henry and co-
workers �19,20� in which spatial diffusion evolves as a
sublinear or fractional power law in time which they call the
“signature” of anomalous diffusion is limited in scope be-
cause of the assumption employed in deriving fractional
cable equations from the Nernst-Planck equations to yield
analytical solutions. The authors assumed the same anoma-
lous diffusion across the membrane as in the cystol, deriving
a fractional cable equation with two as opposed to a single
scaling exponent. Another example of limiting conditions is
the rapid buffer and low calcium concentration employed in
Ref. �56�. In that paper, the coupling between the chemical
and voltage systems was not done according to a two time-
scale matched asymptotic analysis of the coupled voltage-
calcium system. The rationale for this is the fact that the
concentration of calcium and buffer changes on a slower
time scale than the membrane conductance. The time-scale
ratio between voltage and calcium is about 1 msec:1 s. Con-
sequently, the rapid buffer approximation is not a very real-
istic approximation. As a result, the rapid buffer approxima-
tion used in Ref. �56� to determine a perturbation expansion
for the calcium subsystem needs to be changed in order to
extend the present model to investigate intracellular signal-
ing in dendrites and the effects intracellular capacitive cur-
rent play in distorting the calcium-voltage signal.

The impact of the axial capacitance on the frequency-
dependent attenuation of voltage with distance was not done
simply because there is a need to consider a more realistic
case of inhomogeneities in the conductivity and permittivity
of the intracellular medium. However, in this paper, homo-
geneous media cannot display frequency-dependent proper-
ties because the endogenous core is embedded in a homoge-
neous intracellular medium of constant conductivity and
permittivity in space and time. Finally, the assumption that
the extracellular medium is isopotential has recently been
criticized by Voßen et al. �9� who have shown that by chang-
ing the extracellular potential it is capable of altering signal
propagation in the intracellular medium. This can be done in
the present model by accommodating the extracellular poten-
tial as part of the source term in the generalized cable equa-
tion �43�.

VIII. CONCLUSIONS

To summarize our results, we have presented a Maxwell-
ian approach regarding the role of neurobiological thermal

noise due to intracellular capacitive effect on electric signal-
ing in dendrites. A generalized cable equation in the presence
of an electric field in a one-dimensional cable representation
of a passive dendritic segment composed of a plasma mem-
brane and endogenous core of functional ER and cytoskeletal
structures was described to account for intrinsic �thermal�
noise due to surface-charge effects within the Debye layer.
The model is based on Maxwell’s equations in one spatial
dimension and takes into account surface-charge effects of
endogenous structures in dendrites. The governing equation
is a linear cable equation with an additional source term cor-
responding to the intrinsic electric field induced by free
charge dispersion on the Debye surface of such endogenous
structures and which acts as the source of thermal noise.
Such a third-order partial differential equation which is also
known as Barenblatt’s equation has an analytical solution
that can explicitly reveal the effect thermal noise due to ca-
pacitive effects has on the voltage attenuation with distance
along the dendritic cable. The solution of a generalized cable
equation with specific boundary conditions was used to show
that electrotonically short cables are prone to significant neu-
robiological thermal noise.

An alternative approach was chosen via a perturbation
series expansion for the membrane potential. The solution
revealed which terms were ignored when the one-
dimensional cable equation is used to model passive den-
drites in the absence of intrinsic electric fields. An
asymptotic expression for the first perturbative term in the
expansion of the membrane potential at small values of time
yielded the percentage of thermal noise from the intracellular
capacitive effects that contribute to the membrane potential.
Thermal noise affects the voltage response to within accept-
able values of negligibility if the cable is considered to be
electrotonically long. However, for electrotonically short
cables, the effect of thermal noise is significant and can dis-
tort the membrane potential, while for cables that are treated
as compartments �L�0.2�, thermal noise can dominate the
signal. Compartmentalization of dendrites is significantly
weakened and perhaps invalidated because of the dominant
influence of neurobiological thermal noise in small compart-
ments.
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